terça-feira, 14 de fevereiro de 2012

Duas vezes 100 é igual a 200?

Ilydio Pereira de Sá
Vinícius Gusmão P. de Sá

A pergunta que consta do título deste artigo pode parecer descabida, mas sua resposta não tem nada de trivial. No contexto das transações comerciais e financeiras, nem tudo é o que parece. Talvez quase nada o seja.
Vejamos um exemplo. Uma mercadoria está sendo vendida com 20% de desconto no pagamento à vista. Oferece-se também a opção de cheque pré-datado para 30 dias pelo preço da tabela, sem juros. Quanto estará, em verdade, pagando de juros o cliente que optar pelo cheque pré-datado?
Esse tipo de oferta é muito comum no comércio. Os anúncios fazem crer que se pode levar agora o produto e pagar por ele apenas no mês seguinte sem nenhuma desvantagem. Balela. Trata-se de artifício que confunde o consumidor menos informado, pois disfarça, na forma de um alegado desconto no pagamento à vista, o que são de fato os juros do pagamento a prazo. O preço justo do produto é, evidentemente, seu preço à vista; este é o preço pelo qual o produto pode ser adquirido, é quanto o produto vale, para todos os efeitos, sob o ponto de vista do comprador. O vendedor não está sendo caridoso ou cobrando mais barato na compra à vista; está, sim, cobrando mais caro no caso em que o pagamento não é efetuado no ato. Em outras palavras, está cobrando juros.
Ainda mais dramático que o disfarce dos juros nos anúncios é o fato de que sua taxa é maior do que a do desconto que se está supostamente oferecendo. No exemplo dado, suponhamos que o "preço de tabela" do produto fosse R$ 200,00. Dessa forma, com os tais 20% de desconto, quem comprasse à vista pagaria R$ 160,00 − que é, para todos os efeitos, o preço real da mercadoria. Quem utilizasse o cheque pré-datado, portanto, estaria deixando de pagar R$ 160,00 e pagando R$ 200,00 pelo mesmo produto, no mês seguinte. Ou seja, R$ 40,00 de juros incidiram sobre os R$ 160,00 do preço à vista; logo, a taxa de juros da operação é de 40/160 = 0,25, isto é, 25%.
As coisas poderiam ser ainda piores.
Imagine que a compra seja dividida em duas prestações "sem juros", na forma de uma entrada de R$ 100,00 e de um cheque pré-datado para 30 dias cobrindo os R$ 100,00 restantes. Ora, nesse caso, o saldo devedor, que será quitado no prazo de um mês, é apenas de R$ 60,00, referentes à diferença entre os R$ 160,00 do preço à vista e os R$ 100,00 que já foram pagos no ato da compra. O cliente sai da loja devendo, portanto, R$ 60,00, mas pagará outros R$ 100,00 para quitar sua dívida! Os juros foram novamente de R$ 40,00; nesse caso, porém, e lembrando que juros só fazem sentido se calculados sobre saldos devedores, os R$ 40,00 a mais foram cobrados por uma dívida de apenas R$ 60,00, o que nos dá uma taxa de 40/60 = 0,666...
Ou seja, aproximadamente 67% teria sido a taxa de juros praticada.
Fica claro que duas vezes 100 nem sempre é exatamente 200?
Pelo menos, não foi o que aconteceu no pagamento parcelado − e "sem juros" − da situação que acabamos de discutir. Sob a ótica do comprador, duas parcelas de R$ 100,00 lhe adquiriram um produto que custava, na verdade, apenas R$ 160,00. Por outro lado, sob o ponto de vista do vendedor, as mesmas duas parcelas permitiram-lhe uma transação que lhe rendeu juros à gorda taxa de 67% ao mês (ou, se quisermos pensar em valores absolutos, o vendedor, ao fim de 30 dias, colocará no bolso os R$ 100,00 da segunda prestação mais os R$ 100,00 pagos na entrada corrigidos no tempo por uma aplicação financeira qualquer; na prática, mais do que R$ 200,00 − e bem mais do que R$ 160,00).
Vamos adiante. Se alguém lhe pergunta: você prefere receber R$ 100,00 ou R$ 120,00? Certamente, você escolhe de imediato os R$ 120,00 e desconfia da sanidade mental do perguntador. Mas e se a pergunta, na verdade, é: você prefere receber R$ 100,00 hoje ou R$ 120,00 daqui a cinco anos? Aí você para e pensa. E deve concluir, acertadamente, que ganhar R$ 100,00 hoje é mais vantajoso do que ganhar R$ 120,00 daqui a cinco anos, pois, se investir os R$ 100,00 numa aplicação tão conservadora quanto, por exemplo, a caderneta de poupança, terá, salvo alguma catástrofe econômica, bem mais do que R$ 120,00 ao fim daquele período.
Fundamental, em matemática comercial e financeira, é o valor do dinheiro no tempo, conceito tão simples quanto negligenciado pela maioria das pessoas. Não podemos operar diretamente com valores monetários referentes a datas distintas. É necessário que coloquemos todos os valores numa mesma data, valorizando-os ou desvalorizandoos na linha do tempo.
O desrespeito a esse conceito dá origem a erros graves, e não são poucos os que temos visto em revistas, programas de televisão, apostilas, anúncios e até mesmo em livros didáticos. Um dos erros cotidianos mais prosaicos ocorre quando, ao se depararem com prestações fixas do tipo 12 × R$ 200,00, as pessoas calculam o preço financiado efetuando a multiplicação 12 × 200 = R$ 2.400,00, cometendo, assim, o mesmo tipo de erro que destacamos em nosso primeiro exemplo.
Para fechar o assunto e ressaltar a importância de raciocinarmos corretamente com o valor do dinheiro no tempo, vejamos mais uma situação prática. Uma pessoa compra uma televisão em duas prestações de R$ 650,00, uma no ato da compra e outra para 30 dias. Qual a taxa de juros embutida nessa transação, se o preço do aparelho à vista é de R$ 1.200,00?
A maneira incorreta − e que é, infelizmente, a mais encontrada − de se responder à pergunta considera que, ao fim dos 30 dias, o total pago terá sido de 2 × R$ 650,00 = R$ 1.300,00; logo, teriam incidido juros de R$ 100,00 sobre os R$ 1.200,00 do preço à vista do televisor. Sua taxa seria, dessa forma, de 100/1200, ou aproximadamente 8,3%.
A solução correta, que não ignora o valor do dinheiro no tempo, considera que, após ter sido feito um pagamento de R$ 650,00 no ato da compra, dos R$ 1.200,00 que teriam que ser pagos pelo aparelho restariam apenas R$ 1.200,00 − R$ 650,00 = R$ 550,00. Essa é a dívida que será quitada apenas 30 dias depois, e não o preço à vista integral do produto. Como o cheque pré-datado tem valor de R$ 650,00, foram cobrados juros de R$ 100,00 sobre os R$ 550,00 que eram devidos! Calculando a taxa de juros, encontramos 100/550 = 0,181818..., que corresponde a aproximadamente 18%.
Lembremos sempre que:
• as taxas de juros devem ser calculadas sobre o saldo devedor e não sobre o valor total da mercadoria;
• quando há incidência de juros ou inflação, nunca se deve operar com valores monetários que estejam referidos a datas distintas, ou seja, nas compras financiadas, devemos resistir à tentação de somarmos, pura e simplesmente, o valor das prestações. No caso de prestações fixas, podemos recorrer a uma consulta na tabela Price, evitando cálculos mais elaborados.


Fonte: Revista do professor de Matemática        

Nenhum comentário:

Postar um comentário